27

JQX/进取芯 席明纳第15期(2025.10.16)

从费马原理到最速降线

JQX|Xiao

1.伯努利与最速降线
在 17 世纪,约翰·伯努利(Johann Bernoulli)在思考最速降线问题时,受到了光学中“费马最短时间原理”的启发。费马指出:光线在传播时,总是选择一条能使它从出发点到达目标点所需时间最短的路径。
通过这一原理可推导出斯涅尔定律。当光从一种介质进入另一种介质时,传播速度发生变化,光线发生折射,而其入射角和折射角满足:\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2} = \text{C}
其中v_1,v_2 分别是光在两种介质中的速度。伯努利的关键思想是把物体下滑的路径与光的传播类比。伯努利设想:把空间分成由折射率不同的介质组成的一层层的结构。若把粒子在重力场中下滑的路径比作光线在不同介质中的传播,那么下滑路径的不同高度就好比不同折射率的层。物体下落的速度v 取决于高度y,由能量守恒有v \propto \sqrt{y},由于光总是沿着时间最短的路径传播,所以如果粒子的运动路径与光相同,那么它的轨迹就是最速降线。根据斯涅尔定律:\frac{v}{\sin\theta} = \text{C},带入机械能守恒方程,于是得到最速降线的微分关系:\frac{\sin\theta}{\sqrt{y}} = k

2.摆线方程证明

按照伯努利的说法,他一眼就看出这是摆线的方程。下面引用马克·莱维的方法对这个公式进行证明。设想一个在天花板上滚动的轮子,轮缘上的一点 P 描绘出一条倒置的摆线。轮与天花板的接触点 C 是这一瞬间的瞬时旋转中心。此时,点 P 的运动相当于以 C 为支点的圆周运动。 圆的切线与半径垂直 ,摆线在 P 点的切线垂直于 PC。 PC 与圆的直径构成直角三角形,斜边是圆的直径。通过相似三角形关系,可以得到:y = (\text{D}) \cdot \sin^2\theta于是立刻有:\frac{\sin\theta}{\sqrt{y}} = \frac{1}{\sqrt{\text{D}}} = \text{C}这正是伯努利得到最速降线方程的关键条件。因此,摆线满足\sin\theta/\sqrt{y}为常数的性质。几何与物理在此奇妙地契合——摆线的几何构造,正体现了自然界中“时间最短”的运动规律。

3. 最速降线圆心速度分析
摆线是由于轮子滚动时轮子上的一点形成的,那么当轮子如何滚动时,滚出的摆线轨迹与小球沿最速降线下滑时刚好吻合,或者说小球沿最速降线下滑时,对应的圆的圆心速度大小是多少?
物体在摆线上的运动可以看成由两部分组成,分别是是圆心的平动速度和相对于圆心的转动速度。如图中所示,其中平动速度水平向右,转动速度沿圆周运动的切线方向。由几何关系可知:2v_0\sin\theta = \sqrt{2gy}.根据摆线方程: y = D \sin^2\theta = 2R \sin^2\theta .以及机械能守恒:v = \sqrt{2gy}.可以得到v_0 = \sqrt{gR},其中v_0 与g、R均为常数。这说明最快下落的路径对应轮子上一点匀速转动过的轨迹。

下期预告:静止在光滑地面的光滑半圆形轨道、抛物线轨道、斜面,当有小球滑下,小球的运动轨迹是什么样的?斜面模型下,下滑的时间能否求解?下节课,金师带你探索这类问题的求解方法,敬请期待!

On this day..

Comments are closed.